
Dynamically Computing Depth in Data Sets

Sydney Leither (Baldwin Wallace University), Sunaina Butler, Ben Mikek (Grinnell College)

COURAGE @ Clemson University

MATH REU Conference @ Clemson University, July 2020

The 'Center' of a Data Set

The median is more robust to outliers than the mean

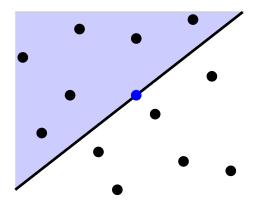
Data Depth

Definition

Depth of data points: proximity to center

Definition

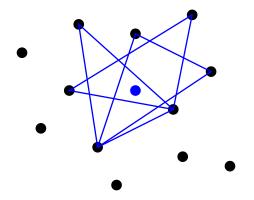
Deepest point: generalization of the median


- generalize the median to higher dimensions
- cannot be calculated as easily

Half-Space Depth

Definition

Half-space: one side of a line drawn through a point


Where can we draw any line and evenly split the data set?

Measure of depth: minimum number of points in a half-space

Simplicial Depth

Which point is in the interior of the most triangles?

Measure of depth: number of triangles

- Point A: deepest point
- How many extra triangles does it get?

В

D F

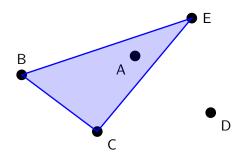
А

ſ

ĐE

D

Note that:

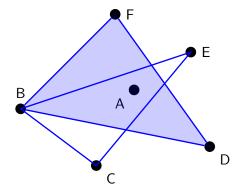

$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$

$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$

- Point A: deepest point
- How many extra triangles does it get?
- Note that:

$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$

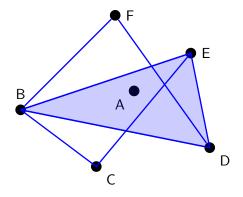
$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$



D F

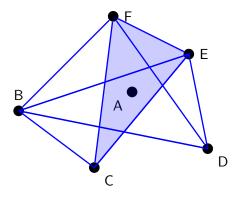
- Point A: deepest point
- How many extra triangles does it get?
- Note that:

$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$


$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$

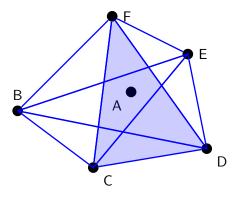
- Point A: deepest point
- How many extra triangles does it get?
- Note that:

$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$


$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$

- Point A: deepest point
- How many extra triangles does it get?
- Note that:

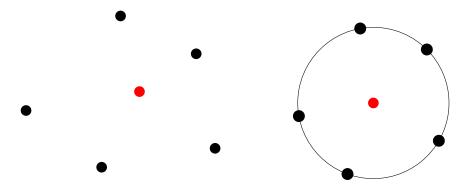
$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$


$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$

- Point A: deepest point
- How many extra triangles does it get?
- Note that:

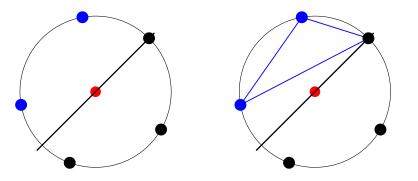
$$\begin{pmatrix}
6 \\
3
\end{pmatrix} = 20$$

$$\begin{pmatrix}
5 \\
2
\end{pmatrix} = 10$$



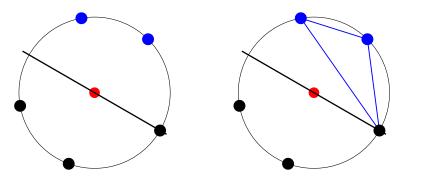
Static Simplicial Depth

- Baseline for dynamic algorithm
- Goal: Find the simplicial depth of a point within a dataset
- Idea: Find the total number of triangles and subtract the triangles that do not contain the query point

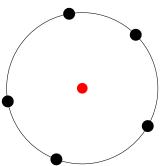

Static Simplicial Depth Algorithm

- Project points onto circle centered at query point
- Sort points radially
- Count points (n)

Static Simplicial Depth Algorithm: Half-Space


- Until back at start:
 - ▶ Store number of points strictly left of the bounding line (*h_i*)
 - Rotate bounding line clockwise until a new point is hit

 $h_1 = 2$

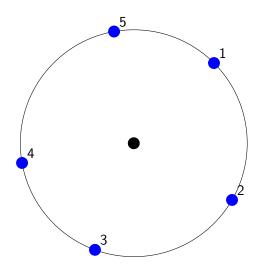

Static Simplicial Depth Algorithm: Half-Space

- Until back at start:
 - Store number of points strictly left of the bounding line (h_i)
 - Rotate bounding line clockwise until a new point is hit

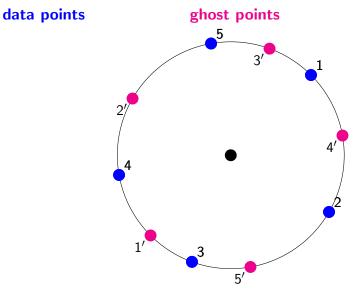
Static Simplicial Depth

Plug into formula $\binom{n}{3} - \sum_{i=1}^{n} \binom{h_i}{2}$ n = 5 $h_1 = 2$ $h_2 = 2$ $h_3 = 2$ $h_4 = 2$ $h_5 = 2$ Depth = $\binom{5}{3} - (\binom{2}{2} + \binom{2}{2} + \binom{2}{2} + \binom{2}{2}) = 5$

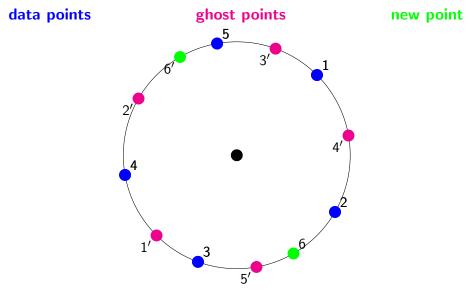
A Dynamic Algorithm for Simplicial Depth

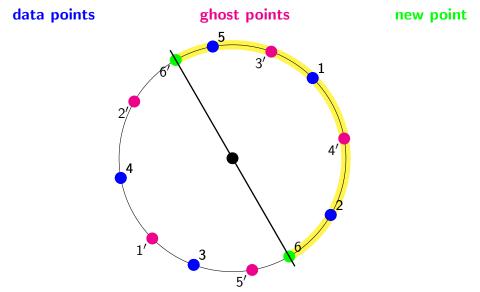

Problem

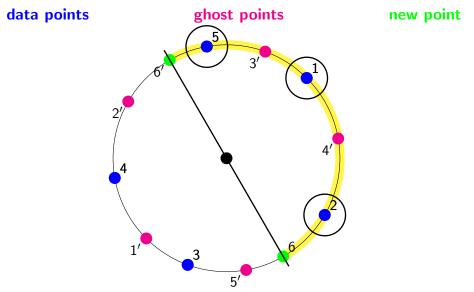
Fix the query point θ and add a point x. What is the new depth of θ ?


- Increment the number of points for half-spaces that contain x
- **②** Compute the number of points in *x*'s half-space
- Add to the data set

Increment the number of points for half-spaces that contain x


data points


Increment the number of points for half-spaces that contain x


 Increment the number of points for half-spaces that contain x

 Increment the number of points for half-spaces that contain x

 Increment the number of points for half-spaces that contain x

Increment the number of points for half-spaces that contain x

Lemma

For some set of values $\{k_i\}_{i=1}^n$ with $k_i \in \mathbb{N}$,

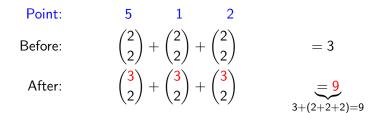
$$\sum_{i=1}^{n} \binom{k_i + 1}{2} = \sum_{i=1}^{n} \binom{k_i}{2} + \sum_{i=1}^{n} k_i$$

Increment the number of points for half-spaces that contain x

Lemma

For some set of values $\{k_i\}_{i=1}^n$ with $k_i \in \mathbb{N}$,

$$\sum_{i=1}^{n} \binom{k_i + 1}{2} = \sum_{i=1}^{n} \binom{k_i}{2} + \sum_{i=1}^{n} k_i$$

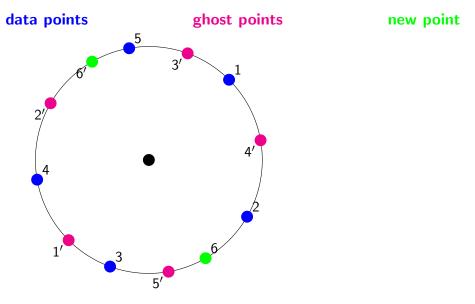

Point: 5 1 2
Before:
$$\begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 2\\2 \end{pmatrix} + \begin{pmatrix} 2\\2 \end{pmatrix} = 3$$

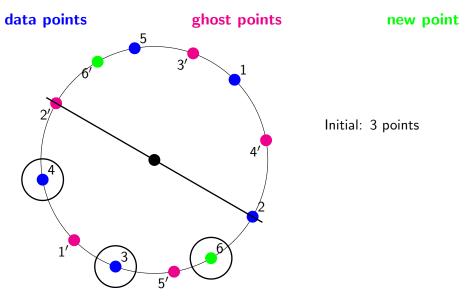
 Increment the number of points for half-spaces that contain x

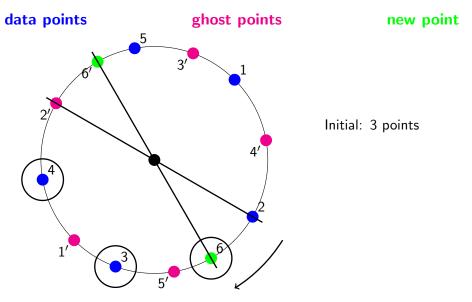
Lemma

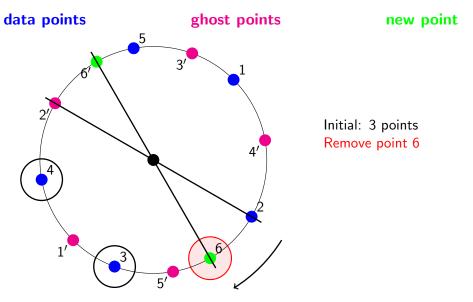
For some set of values $\{k_i\}_{i=1}^n$ with $k_i \in \mathbb{N}$,

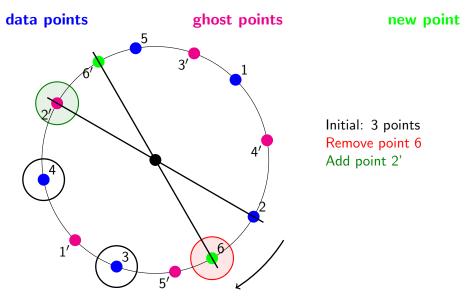
$$\sum_{i=1}^{n} \binom{k_i + 1}{2} = \sum_{i=1}^{n} \binom{k_i}{2} + \sum_{i=1}^{n} k_i$$

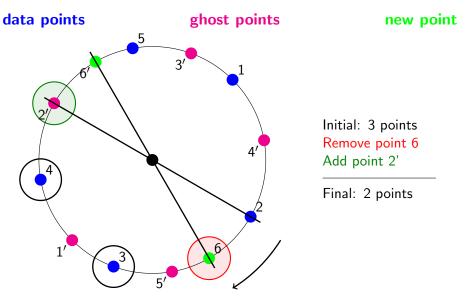



A Dynamic Algorithm for Simplicial Depth


Problem


Fix the query point θ and add a point x. What is the new depth of θ ?


- Increment the number of points for half-spaces that contain x
- **②** Compute the number of points in *x*'s half-space
- Add to the data set



A Dynamic Algorithm for Simplicial Depth

Problem

Fix the query point θ and add a point x. What is the new depth of θ ?

- Increment the number of points for half-spaces that contain x
- **②** Compute the number of points in *x*'s half-spaces
- Add to the data set

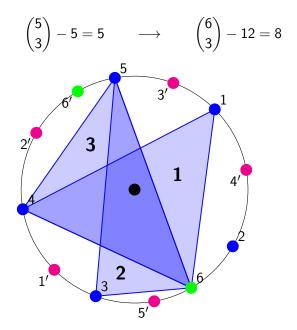
3 Add *x* to the data set

Counting triangles that **do not** contain θ :

	Before 6		Contributed by 6		After 6		
Before:	3	+	0	+	2	=	5

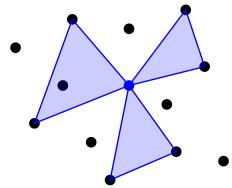
3 Add *x* to the data set

Counting triangles that **do not** contain θ :


	Before 6		Contributed by 6		After 6		
Before:	3	+	0	+	2	=	5
After:	9	+	$\binom{2}{2} = 1$	+	2	=	12

3 Add *x* to the data set

Counting triangles that **do not** contain θ :


	Before 6		Contributed by 6		After 6		
Before:	3	+	0	+	2	=	5
After:	9	+	$\binom{2}{2} = 1$	+	2	=	12
	$\begin{pmatrix} 5\\3 \end{pmatrix}$) – 5 =	$=5 \longrightarrow$	$\begin{pmatrix} 6\\ 3 \end{pmatrix}$	- 12 = 8		

Reasonableness Check

Future Questions

• A dynamic algorithm for Oja depth and other depth measures

• How are the different depth measures related?

Thank you!